Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
HIV Med ; 24(7): 785-793, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2270560

RESUMEN

OBJECTIVES: Our objective was to assess immune responses and their influencing factors in people living with HIV after messenger RNA (mRNA)-based COVID-19 booster vaccination (third dose). METHODS: This was a retrospective cohort study of people living with HIV who received booster vaccination with BNT-162b2 or mRNA-1273 between October 2021 and January 2022. We assessed anti-spike receptor-binding domain (RBD) immunoglobulin G (IgG), virus neutralizing activity (VNA) titres reported as 100% inhibitory dilution (ID100 ), and T-cell response (using interferon-gamma-release-assay [IGRA]) at baseline and quarterly follow-up visits. Patients with reported COVID-19 during follow-up were excluded. Predictors of serological immune response were analyzed using multivariate regression models. RESULTS: Of 84 people living with HIV who received an mRNA-based booster vaccination, 76 were eligible for analysis. Participants were on effective antiretroviral therapy (ART) and had a median of 670 CD4+ cells/µL (interquartile range [IQR] 540-850). Following booster vaccination, median anti-spike RBD IgG increased by 705.2 binding antibody units per millilitre (BAU/mL) and median VNA titres increased by 1000 ID100 at the follow-up assessment (median 13 weeks later). Multivariate regression revealed that time since second vaccination was a predictor of stronger serological responses (p < 0.0001). No association was found for other factors, including CD4+ status, choice of mRNA vaccine, or concomitant influenza vaccination. In total, 45 patients (59%) had a reactive baseline IGRA, of whom two lost reactivity during follow-up. Of 31 patients (41%) with non-reactive baseline IGRA, 17 (55%) converted to reactive and seven (23%) remained unchanged following booster vaccination. CONCLUSIONS: People living with HIV with ≥500 CD4+ cells/µL showed favourable immune responses to mRNA-based COVID-19 booster vaccination. A longer time (up to 29 weeks) since second vaccination was associated with higher serological responses, whereas choice of mRNA vaccine or concomitant influenza vaccination had no impact.


Asunto(s)
COVID-19 , Infecciones por VIH , Gripe Humana , Humanos , Estudios Retrospectivos , COVID-19/prevención & control , Vacunación , ARN Mensajero , Inmunidad , Inmunoglobulina G , Anticuerpos Antivirales
2.
Infection ; 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2267233

RESUMEN

PURPOSE: School closures have been used as part of lockdown strategies to contain the spread of SARS-CoV-2, adversely affecting children's health and education. To ensure the accessibility of educational institutions without exposing society to the risk of increased transmissions, it is essential to establish SARS-CoV-2 testing strategies that are child-friendly, scalable and implementable in a daily school routine. Self-sampling using non-invasive saliva swabs combined with pooled RT-qPCR testing (Lolli-Method) has been proven to be a sensitive method for the detection of SARS-CoV-2. METHODS: We conducted a pilot project in Cologne, Germany, designed to determine the feasibility of a large-scale rollout of the Lolli-Method for testing without any additional on-site medical staff in schools. Over a period of three weeks, students from 22 schools were sampled using the Lolli-Method. At the end of the project, teachers were asked to evaluate the overall acceptance of the project. RESULTS: We analyzed a total of 757 pooled RT-qPCRs obtained from 8,287 individual swabs and detected 7 SARS-CoV-2 infected individuals. The Lolli-Method was shown to be a feasible and accepted testing strategy whose application is only slightly disruptive to the daily school routine. CONCLUSION: Our observations suggest that the Lolli-Method in combination with pooled RT-qPCR can be implemented for SARS-CoV-2 surveillance in daily school routine, applicable on a large scale.

3.
Nat Commun ; 13(1): 3640, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1908167

RESUMEN

Systematic SARS-CoV-2 testing is a valuable tool for infection control and surveillance. However, broad application of high sensitive RT-qPCR testing in children is often hampered due to unpleasant sample collection, limited RT-qPCR capacities and high costs. Here, we developed a high-throughput approach ('Lolli-Method') for SARS-CoV-2 detection in children, combining non-invasive sample collection with an RT-qPCR-pool testing strategy. SARS-CoV-2 infections were diagnosed with sensitivities of 100% and 93.9% when viral loads were >106 copies/ml and >103 copies/ml in corresponding Naso-/Oropharyngeal-swabs, respectively. For effective application of the Lolli-Method in schools and daycare facilities, SEIR-modeling indicated a preferred frequency of two tests per week. The developed test strategy was implemented in 3,700 schools and 698 daycare facilities in Germany, screening over 800,000 individuals twice per week. In a period of 3 months, 6,364 pool-RT-qPCRs tested positive (0.64%), ranging from 0.05% to 2.61% per week. Notably, infections correlated with local SARS-CoV-2 incidences and with a school social deprivation index. Moreover, in comparison with the alpha variant, statistical modeling revealed a 36.8% increase for multiple (≥2 children) infections per class following infections with the delta variant. We conclude that the Lolli-Method is a powerful tool for SARS-CoV-2 surveillance and can support infection control in schools and daycare facilities.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Niño , Técnicas de Laboratorio Clínico/métodos , Humanos , SARS-CoV-2/genética , Sensibilidad y Especificidad
5.
J Clin Virol ; 145: 105018, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1487824

RESUMEN

OBJECTIVES: The global spread of SARS-CoV-2 is a serious public health issue. Large-scale surveillance screenings are crucial but can exceed test capacities. We (A) optimized test conditions and (B) implemented pool testing of respiratory swabs into SARS-CoV-2 diagnostics. STUDY DESIGN: (A) We determined the optimal pooling strategy and pool size. In addition, we measured the impact of vortexing prior to sample processing, compared a pipette-pooling method (by combining transport medium of several specimens) and a swab-pooling method (by combining several swabs into a test tube filled with PBS) as well as determined the sensitivities of three PCR assays. (B) Finally, we applied high-throughput pool testing for diagnostics. RESULTS: (A) In a low prevalence setting, we defined a preferable pool size of ten in a two-stage hierarchical pool testing strategy. Vortexing of swabs (n = 33) increased cellular yield by a factor of 2.34. By comparing Ct-values of 16 pools generated with two different pooling strategies, pipette-pooling was more efficient compared to swab-pooling. Measuring dilution series of 20 SARS-CoV-2 positive samples in three PCR assays simultaneously revealed detection rates of 85% (assay I), 50% (assay II), and 95% (assay III) at a 1:100 dilution. (B) We systematically pooled 55,690 samples in a period of 44 weeks resulting in a reduction of 47,369 PCR reactions. CONCLUSIONS: For implementing pooling strategies into high-throughput diagnostics, we recommend utilizing a pipette-pooling method, performing sensitivity validation of the PCR assays used, and vortexing swabs prior to analyses. Pool testing for SARS-CoV-2 detection is feasible and effective in a low prevalence setting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Humanos , ARN Viral , Sensibilidad y Especificidad , Manejo de Especímenes
6.
Viruses ; 12(9)2020 09 18.
Artículo en Inglés | MEDLINE | ID: covidwho-789516

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a global health emergency. To improve the understanding of the systemic component of SARS-CoV-2, we investigated if viral load dynamics in plasma and respiratory samples are associated with antibody response and severity of coronavirus disease 2019 (COVID-19). SARS-CoV-2 RNA was found in plasma samples from 14 (44%) out of 32 patients. RNAemia was detected in 5 out of 6 fatal cases. Peak IgG values were significantly lower in mild/moderate than in severe (0.6 (interquartile range, IQR, 0.4-3.2) vs. 11.8 (IQR, 9.9-13.0), adjusted p = 0.003) or critical cases (11.29 (IQR, 8.3-12.0), adjusted p = 0.042). IgG titers were significantly associated with virus Ct (Cycle threshold) value in plasma and respiratory specimens ((ß = 0.4, 95% CI (confidence interval, 0.2; 0.5), p < 0.001 and ß = 0.5, 95% CI (0.2; 0.6), p = 0.002). A classification as severe or a critical case was additionally inversely associated with Ct values in plasma in comparison to mild/moderate cases (ß = -3.3, 95% CI (-5.8; 0.8), p = 0.024 and ß = -4.4, 95% CI (-7.2; 1.6), p = 0.007, respectively). Based on the present data, our hypothesis is that the early stage of SARS-CoV-2 infection is characterized by a primary RNAemia, as a potential manifestation of a systemic infection. Additionally, the viral load in plasma seems to be associated with a worse disease outcome.


Asunto(s)
Anticuerpos Antivirales/sangre , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/virología , Neumonía Viral/virología , ARN Viral/sangre , Anciano , Betacoronavirus/genética , Betacoronavirus/inmunología , COVID-19 , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Femenino , Alemania/epidemiología , Hospitalización , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/sangre , Neumonía Viral/patología , ARN Viral/análisis , Sistema Respiratorio/virología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Carga Viral , Viremia/sangre , Viremia/patología , Viremia/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA